Feature Grammars

Albrecht Schmidt*, Menzo Windhouwer, Martin Kersten
(albrecht,windhouw,mk) @cwi.nl

CWI

Kruislaan 413
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

ABSTRACT

We propose a grammatical view of the problem of
integrating different data items under a database
perspective. We introduce a variant of context-free
grammars, called feature grammars, whose parsers
may rewrite their input stream. This allows us
to provide a simple mechanism for describing and
maintaining indexes to Internet multimedia docu-
ments. Integration of parser instances as mediators
into a database system provides a remarkably trans-
parent framework for indexing external sources and
also facilitates the use of plug-in modules provided
by third parties. Rewriting the input stream allows
to (1) interpret input data and replace them by their
interpretations, and (2) integrate data from differ-
ent sources by linking them into the input stream in
the spirit of a structuring schema. The techniques
described are used in the Dutch Acoi project.

Keywords. Information Systems, Heterogeneous
Databases, Information Integration, Context-Free
Grammars, Feature Grammars, Multimedia Index-

ing.

1. INTRODUCTION

In the database literature, the problem of integrat-
ing information from heterogeneous sources has re-
ceived a lot of attention (see [6, 5, 3, 16, 18, 12]
for examples). Current approaches to the problem
imply either explicit or implicit three tier archi-
tectures: wrappers provide access to source data,
knowledge-based mediators provide a global sche-
ma [13] or reference schema [15] whose instances are
then queried as semi-structured views [2] through
the query processor of a database. Often techniques
taken from rule-based logic programming [15, 14]
provide the ‘glue’ between the wrapper and the me-
diator. The contribution of this paper is an al-
ternative formulation of this very ‘glue’ between
wrappers and mediators in terms of context-free

* corresponding author

grammars [9]. Experiences with non-database re-
searchers suggest that a grammatical approach pro-
vides a better chance to catch on then a deductive
or DBPL approach.

As information integration mainly borrows its
techniques from the areas of Artificial Intelligence
and Databases [14] a prospective user of the sys-
tems must have quite a background in different ar-
eas of computer science. In practice, this may be
a problem, because researchers in e.g. image anal-
ysis have different working habits and methodolo-
gies. Therefore it may be worth looking at simpler
ways of going about the problem. One of the few
concepts known to virtually any computer scientist
(and not only to those), is the concept of parsing
context-free grammars. Unfortunately, context-free
grammars by themselves are quite static and too
inflexible to be used in complex tasks. The authors
of this paper propose a way of enriching context
free grammars and its parsing method, such that
they can be sensibly used for information integra-
tion. The approach taken is realized and evaluated
in the context of Acoi project [1, 10].

The aim of this paper is to show that it is possi-
ble to enrich context-free grammars in a simple yet
expressive way so that they can play an important
role in the integration of data sources.

This paper is organized as follows. In Section 2
we present two examples to highlight the intuition
and simplicity of a grammatical approach. Then,
in Section 3, we will take a look at the underlying
theory and our experimental setup. A small shift
of our viewpoint is sufficient to basically regard fea-
ture grammars again as context-free grammars. We
conclude with project status and future directions
of research.

2. MOTIVATION AND EXAMPLE

In this section, we try to show why we introduce the
notion of feature grammars and go through two ex-
amples, a real-world and a more abstract example.
We also expose some ideas which should elucidate
the problems that may occur when we allow certain
left-hand grammars symbols, once they fire, to al-
ter the input tape. These special symbols are called
detectors. We will also motivate the choice of name
in a concrete application scenario.
Example 1. We first have a look at a real-world
scenario (which is, in fact, very similar to our main
application) where we want to index web objects
according to their content. In our scenario, we are
given several routines, possibly by third parties, to
do tasks like image analysis, header analysis and
extraction of other features.

An outline of the task ahead runs as follows.
We start with an analysis the HT'TP header for ev-
ery web object. Then depending on the content
type, feature extractors for images or HTML pages
to collect indexing information. This can be accom-
plished with the following feature grammar:

%start web_object;

%atom str url,content_type,title;

Y%detector web_header(url);

%detector image_type 7
content_type="image/gif";

%detector page_type 7
content_type="text/html";

%detector web_page;

web_object: url web_header web_body;

web_header: content_type;

web_body : image_type web_image

| page_type web_page;

web_image : /* list of image analysis
modules to invoke */

/* list of text analysis

modules to invoke */

web_page

The parser associated with this grammar takes
web_object as the start symbol. In a parse tree
representation it forms the root. The symbols url,
web_header and web_body are the children of the
parent node web_object. The leaves of the parse
tree atomary lexical items, i.e. url is declared as
atom. Actually, the url is the only input to the
parser; it simply represents an address on the Inter-
net which is then consumed by the web_header-
detector which gets the document, analyzes its con-
tent, and then outputs this information in format
readable for the image_type and page_type de-
tectors. The parsing rules being fired depends on

the document content. In the case of an image, pro-
cessing continues with web_image, otherwise with
web_page. .

This schema is suitable for a wide range of ap-
plications. However, we also provide a more ab-
stract example to illustrate a range of difficulties
we may encounter in certain situations.

web_object
url web_header

web_body
http:/Aw.cwi .nl/~acoi/ ‘
content_type page_type web_page

text/html true /\
title web_object
Acoi

Example 2. Language recognition is commonly
based on two levels of parsing: lexical analysis and
subsequent parsing of a symbol stream. Given an
input word I = ajasaszay, i.e. the raw input to
a lexical analyzer like lex, we want to construct a
derivation tree. To allow efficient parsing, the first
thing to do, is to analyze at least a part of I lexically
and map it to symbols at a more abstract level than
plain Asci characters.

The key aspect of traditional parsing technol-
ogy which we drop is that the lexical analyzer tra-
ditionally consumes the head of a primitive token
stream. Instead, we use the concept of a detec-
tor, which maps ajas to a symbol list (1082, i.e.
modifying the input stream to (if2a304. We use
the convention that o; are raw input data while g;
have undergone a process similar to lexical analy-
sis. The nature of this process may vary from ap-
plication to application. In the case of a text file it
may closely resemble the activities of lex, while in
the case of an image, a nonlinear analysis could be
carried out. We do not restrict the nature of this
process. In feature grammars parser and (lexical)
analyzer physically operate on the same sequence.
As a constraint, raw letters a; cannot be consumed
by the read head, only analyzed §; can. The parser
derived for the feature grammar then merely con-
sumes the head of the modified token stream.

As a next step in our example, the same or an-
other detector might map B>as to 3. The result of
this operation would be the symbol sequence (3.
Here we see a problem: During the parsing process
intermediate symbols may come up and disappear
again. This poses the questions how to restrict the
language of feature grammars. A possible solution
to this and related questions will be given below.

The next thing that could happen is the consump-
tion of B3 by the parser. Parsing may continue in a
similar way. .

The unpleasant phenomenon of intermediate
symbols which appear and disappear again raises
the problem of how to define the language of an
feature grammar. This and its implications will be
dealt with in the following section.

3. ACTIVE GRAMMARS

Let us now turn our attention to the problems men-
tioned in the example and describe some of the
implications. As mentioned, the main underlying
problem is that the initial input word ajas... is
in general not the word actually consumed by the
parser. Therefore we should question the tradi-
tional definition of the language which is generated
by a grammar.

The following two points make the parsing pro-
cess of feature grammars somewhat different to con-
ventional parsing of ‘ordinary’ context-free gram-
mars: (1) There is no a priori fixed input word.
(2) Intermediate symbols may appear and disappear
again during parsing and therefore should not be
considered part of the language of a feature gram-
mar.

3.1 Theory

We already mentioned that we don’t consider it
sensible to define the language of a feature grammar
G as L(G) = {a|a can be successfully parsed }
because of the lack of transparency which shows
up in intermediate symbols. Furthermore, due to
the interference of detectors L(G) may not even
be context-free in the traditional sense. We rather
want L(G) to reflect the transformations of the in-
put.

The basic idea to cope with these problems is
to not regard an input a; ...a, before parsing as
part of the language of a grammar, but the trans-
formed input (i ...[03,, which is the concatenation
of the symbols being consumed by the read head.
The f;s are the grammar symbols and replace the
input sequence. We therefore define as G’s language
L(G) = {B| B has been successfully parsed }.

This way, a plethora of problems caused by in-
termediate symbols are avoided and we are still able
to apply many important theorems from formal lan-
guage theory. Thus, our next goal is to set up a
framework to establish links between context-free
grammars and feature grammars. Eventually, we
will discover that context-free grammars and fea-
ture grammars actually are very similar. In fact,
from certain perspectives — most notably when we

are interested in the parsing process — we can re-
gard feature grammars as multi-level context-free
grammars.

In the sequel, V denotes a set of variables (non-
terminals), T a set of terminals, S € V the start
symbol, P a set of productions, D a set of special
variables called detectors. G denotes a grammar,
Y. the respective input alphabet, We also use the
convention that a; € X and 3; € T.

Please note that with this set-up, we do not
capture all aspects of feature grammars. Especially,
detectors are allowed to contact other servers or
perform computations which fall out of the frame-
work of parsing technology. To make up for this
deficiency, we should consider the introduction of
a concept similar to the environment known from
modeling methodology of intelligent agents [17]. We
will come back to this topic when we give a formal
definition of what detectors really are. For the time
being, this deficiency is not only accepted but wel-
comed as it will play a special role when we establish
certain properties of common classes of detectors
and use them later for query optimization. We also
will remark when the given model does not work
satisfactorily.

To start with a formalization of our ideas in the
usual framework of formal language theory, imagine
a nondeterministic stack acceptor [7] which parses
an input against a feature grammar. As the tail
of the input sequences changes dynamically, we can
divide it into two parts: (1) One part is static and
already parsed. This part consists of the consumed
B; we mentioned in the Example section. (2) A sec-
ond part (to the right of the read-head) is possibly
rewritten by active nodes/detectors.

In the context of grammars, we normally are
not only interested in validating a sequence against
a grammar, we also want to construct a derivation
tree for a given word a; ...a, € L(G). As we use
the derivation trees for semantic indexing it is espe-
cially interesting to see what properties they have
and whether they are actually ‘good’ representa-
tions of the semantics of the indexed objects. This
question in particularly interesting in the context of
XML documents.

In order to allow efficient parsing, the input
must undergo an abstraction procedure; in tradi-
tional compiler construction this is called lexical
analysis. As pointed out above, we cannot borrow
all traditional concepts one-to-one. Therefore we
stress that our abstraction is only similar to lexi-
cal analysis. Abstractions like ‘3.1415 is a floating
point number’ or ‘what follows is an image with

faces’ are done by detectors which translate part of
the remaining input stream «; ...y into a stream
of recognizable terminal symbols 3; ... Bp,. The re-
sulting stream is consumed by the parser while a
tree representation of the derivation process is kept.
This structure is basically a traditional parse tree
with additional information like time stamps.

To formalize the notion of a detector we must
take into account that the behavior of a detector is
influenced by the complete input stream and other
external factors. Formally, however, it is a mapping
from an input sequence af to a sequence 3’ where a
consists of raw and ' of digested (rewritten) input.
To capture the behavior of detectors we define the
following classes:

Definition. A context-free detector for the non-
terminal d € V' is a function d : ¥* — T™*. .
Definition. A context-sensitive detector for the
non-terminal d € V' is a function d : (T*,¥*) — T™*.
Definition. The actions of a deterministic detec-
tor depend only on the tokens on the input tape.
Definition. A safe detector leaves a parsable to-
ken stream behind. .
Definition. A detector is called restricted, if dur-
ing parsing all its output resolves to a partial tree
whose root is the detector node. "

The definitions fall into two classes. The first
class, to which context-free, context-sensitive and
deterministic detectors belong, captures the differ-
ent kinds of input to a detector. Note that the
problem of intermediate symbols (cf. example at
the beginning of this section) does not appear when
there are only context-free detectors. In the case
of context-sensitive detectors intermediate symbols
may be consumed by detectors. In addition, the
behavior of deterministic detectors does not only
depend on the input on the input tape but also on
the ‘environment’. While the behavior of context-
free detectors is determined only by raw input data,
context-sensitive detectors look at a raw and di-
gested input; in addition, detectors which are not
deterministic, may also contact the ‘environment’
(i. e. other servers etc.). Therefore the following
inclusions hold:

Dcontextffree
C
Dcontext—sensitive
C
Ddeterministic
C

Dgeneral .

Of course, we don’t want a detector to output
tokens that garble up our parsing process; instead,
its output should be a valid input to the parser.
This motivates the definitions of safe and restricted
detectors. In analogy to the inclusions in the last
paragraph, one can easily reason that Diegtricted C
Dsafe-

Now we come to the central definition of this
section. We define:

Definition. We define the language L(G) of an
feature grammar G as L(G) = {f|3a : a 5 f}

(5 has its usual meaning.) Informally, this
says that L(G) consists of all 8’s that have under-
gone successful parsing. As mentioned above, it is
problematic to say that @ = a; ..., is in L(G)
as o ...ay, is manipulated during the parsing pro-
cess. To be able to analyze the properties of G we
must look at what the read head sees at the time
the input is consumed. Actually, this is the word
B = B1...0n. The advantage of the above defini-
tions is that now the concept of detectors fits seam-
lessly into the theory of context-free grammars as
we will see in the following definitions. We recall
the following
Definition. A grammar G = (V,T, S, P) is called
context-free if all productions in P are of the form
A—z,where AcV,z e (VUT)*.

We base our view of feature grammars on the
definition of context-free grammars. Regarding de-
tectors as ‘active’ nodes in the derivation tree under
construction, we define:

Definition. We call G = (V,T,S, P, D) a feature
grammar, if (VUD,T, S, P) is a context-free gram-
mar. .

Due to the interference of detectors the parse
trees of feature grammars have properties which
‘normal’ trees don’t have. One example is that the
leaves in feature grammar parse trees are not nec-
essarily labeled with only terminals but with either
terminals or detectors. A leaf is labeled with a de-
tector d if d does not rewrite the input string. How-
ever, one also expects such a node to have an at-
tribute like a time stamp which indicates when the
analysis was made or some synthesized or inherited
value.

To be able to talk about partial parse trees, we
give the following
Definition. A context-free grammar

G'=(V',T',a,P',D')

is a minimal sub-grammar of the context-free gram-
mar G = (V,T,P,S,D) if

(1) (VlaTla-PI:DI) - (V5T7P>D)>

(2) ae V'UT'UD', and

(3) every V € V'UT' U D' can be derived from a.

Theorem. Let G = (V,T,5,P,D) be a feature
grammar with all detectors d € D safe and re-
stricted. Then the languages of all of G’s minimal
sub-grammars with S € D are context-free. .

Sketch of Proof. A first observation is that all
rules of the sub-grammar, once they are evaluated,
are matched against a fixed token stream. Then
there are two cases: (1) no detector is the root of a
subtree. (2) a single detector is the root subtree. In
case (1) parsing is done as with ‘normal’ context-
free grammars. In case (2) the grammar ‘under’ the
detector node is still context-free and can be parsed.
Following this reasoning from the leaves of the parse
tree up to the top node proves theorem 1. .

To be able to compare the behavior of feature
grammars to that of context-free grammars, we de-
fine
Definition. A grammar G behaves like a context-
free grammar if it can be parsed like a context-free
grammar.

We immediately apply this definition to our
context.

Theorem. A feature grammar G behaves like a
context-free grammar. -

Sketch of Proof. Theorem 2 holds because all
sub-grammars of G are context-free and because the
class of context-free grammars is closed under con-
catenation and embedding. To see this, let both
Gl = (V]_,Tl,Sl,Pl) and G2 = (‘/2,T2752,P2) be
context-free grammars, and (G;) and L(G3) their
languages. Then L(G) = {wiwz|w; € L(G;)} is de-
scribed by G = (‘/1 U‘/Q,Tl UTQ,S,Pl UubPU {S —
S5152}), which obviously is context-free. So L(G) is
context-free. The same reasoning holds for embed-
ding a grammar G; in a rule of Gs. .

To sum up, we can see that there are many sim-
ilarities between context-free grammars and feature
grammars. Of course, this has both positive and
negative effects. On the one hand, we can apply
many concepts from formal language theory to fea-
ture grammars. On the other hand, we also inherit
the complexity of parsing. Parsing times for many
applications even deteriorate because, in general,
we don’t have a look-ahead due to the ‘dynamic’
nature of the input stream. To overcome some of
these difficulties, we might try to restrict ourselves
to a certain subtype of context-free grammars that

is in common use: Bracketed Grammars [8]. The
structure of Bracketed Grammars closely resembles
the structure of XML marked up documents. Intro-
ducing such a restriction has the disadvantage that
we also impose restriction on the structure of the
output of detectors.

But we can also learn from the design of XML.
As we want to use parse trees as semantic indices,
we are not quite content with what context-free
grammars offer. The resulting parse trees often
don’t have an intuitive form; especially lists don’t
have a natural linear representation. We therefore
introduce regular expression right hand sides in the
spirit of [11], which allow us for formulate grammars
much like XML DTDs.
Example 3. In this example we show some cor-
respondences between XML and feature grammars.
The mapping between DTD and grammar is quite
intuitive. Compare the XML-like DTD to the ex-
ample in Section 2.

<!DETECTOR web_object
(url,web_header,web_body)>
<!DETECTOR url>
<!DETECTOR web_header (content_type))
<!ELEMENT web_body
(image_type web_image
| page_type web_page)>
<!DETECTOR image_type>
<!DETECTOR page_type>
<!ELEMENT web_image (photo | logo)>
<!ELEMENT web_page
(title?,web_object*)> ...

It should be added at this point that changing
to bracketed grammars does affect the way detec-
tors have to be designed. For example, not only
does the detector web header have to separate
HTML Header from HTML Body as it has to do in
the feature grammar version; it also has to incorpo-
rate XML tags (i.e. typed brackets) at the beginning
and at the end of the body block. In practice this
means that — in the worst case — all of the input has
to be read and written back before processing can
continue. In real applications the situation should
not be that bad as the input of a detector is nor-
mally much larger that its output.

Furthermore, the design of detectors becomes
much simpler since the implicit structure of XML
documents can be exploited. This is also reflected
in a feature space. .

3.2 Other Features

There are several interesting features which we
can’t describe due to lack of space. Instead, we just

mention some interesting points.

Our feature grammar toolkit includes declara-
tive programming language constructs for detectors,
which support OQL-like queries on the parse tree
under construction and other databases. This leads
to an high level declarative definition of a feature
space, which is considered a prerequisite for storage
and processing optimization.

We should also mention that care has to be
taken to ensure that grammars allow efficient pars-
ing; a plethora of work has been done in this area.
In particular Bracketed Grammars [8] combined
with regular expression-like right hand sides [11]
have the advantage of being efficiently parsable and
at the same time provide a certain semantic depth.
We also stress that feature grammars may simplify
integration and view maintenance of XML docu-
ments. Of particular interest is the query language
mentioned in the preceding section.

3.2 Application

In this section we are going to take a look at
the setup of our application. What we describe is
implemented in a database system which maintains
indexes to data items on the Internet. This setup
is depicted in the following figure:

Internet

The index database contains URLs of web ob-
jects and semantic descriptions in the form of parse
trees which were generated by a feature grammar
engine. These parse trees contain two kinds of in-
formation: administrative and semantic.

Administrative information is expressed by a
core feature grammar whose detectors then gather
information about modification dates, MIME types
and HTML pages containing links to other possible
candidates. This administrative information is used
to manage the exploration of the web.

For each multimedia type a more specific fea-
ture grammar, a subtree of the core grammar, is

specified. These grammars lead to semantic descrip-
tions of the specific multimedia type by calling and
relating specific detectors. The detectors use algo-
rithms of several multimedia research groups in the
Netherlands for e.g. icon generation or language
classification.

Queries on the collection of parse trees can now
combine context (information from the HTML file
in which the multimedia object is embedded), con-
tent (basic information extracted from multimedia
object) and concept (found by combining both con-
text and content) information. The queries are ex-
pressed in a OQL-like query language for which a
web interface is currently under development.

Current development also focuses on schema
migration and topics like incremental parsing be-
cause more and more detectors are become avail-
able. This also raises the need for database updates.

4. CONCLUSION

We have presented feature grammars, an extension
to context-free grammars specially designed for in-
formation integration and maintenance. We think
it is a practical and flexible method to integrate
barely structured data and plug-in modules in a
semi-structured way. We have shown that from
a theoretical point of view, they can be seen as
context-free grammars with active nodes that may
rewrite their input sequence.

The ideas presented are implemented in the
Dutch Acoi project [1]. The current status of the
project is that a compiler compiler has been imple-
mented; the system is in operation and has been
indexing large amounts of web pages, images, and
MIDI files using a novel database system [4].

Future work will include topics like incremental
parsing of documents, schema transition and fur-
ther acceleration of the parsing process.

4. REFERENCES

[1] DMW. http://www.cwi.nl/ acoi/DMW/.

[2] Serge Abiteboul. Querying semi-structured
data. In ICDT, pages 1-18, 1997.

[3] K. D. Bollacker, S. Lawrence, and C. L.
Giles. Citeseer: An autonomous web agent
for automatic retrieval and identification of
interesting publications. In Proceedings of
the Second International Conference on Au-
tonomous Agents, pages 116-123. ACM Press,
May 1998.

[4]

[10]

[11]

[12]

[13]

[14]

[15]

P. Boncz and M. L. Kersten. Monet: An im-
pressionist sketch of an advanced database
system. In Proc. IEEE BIWIT Workshop,
San Sebastian (Spain), July 1995.

S. Cluet, C. Delobel, J. Simeon, and

K. Smaga. Your mediators need data con-
version! In ACM SIGMOD, pages 177-188,
1998.

D. Florescu, A. Levy, and A. Mendelzon.
Database techniques for the world wide web:
A survey. ACM SIGMOD Record, 27(3):59—
74, 1998.

R. W. Floyd and R. Beigel. The Language of
Machines. Computer Science Press, 1994.

S. Ginsburg and M. A. Harrison. Bracketed
context-free grammars. Journal of Computer
and System Sciences, 1(1):1-23, 1967.

J. E. Hopcroft and J. D. Ullman. Introduc-
tion to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

M. L. Kersten, N. Nes, and M. Windhouwer.
A feature database for multimedia objects. In
ERCIM Database Research Group Workshop
on Metadata for Web Databases, pages 49-57,
Bonn, Germany, 1998.

W. R. LaLonde. Regular right part grammars
and their parsers. Communications of the
ACM, 20(10):731-741, 1977.

V. Lattes and M. C. Rousset. The use of
carin language and algorithms for information
integration: the picsel project. In Second In-
ternational and Interdisciplinary Workshop:
Intelligent Information Integration, pages
127-140, 1998.

Juan C. Lavariega and Susan D. Ur-
ban. Donaji: A semantic architecture for
multidatabase systems. In Second In-
ternational and Interdisciplinary Work-
shop: Intelligent Information Integration,
pages 39-53, http://www.informatik.uni-
bremen.de/ wache/i3/ws-ecai98/, 1998.

A. Levy and M. C. Rousset. Combining horn
rules and description logics in carin. Artificial
Intelligence Journal, 104, 1998.

Oliver M. Duschka Michael R. Genesereth,
Arthur M. Keller. Infomaster: An information

integration system. In Proceedings of 1997
ACM SIGMOD Conference, 1997.

[16]

[17]

[18]

Y. Papakonstantinou, H. Garcia-Molina, and
J. Ullman. Medmaker: A mediation system
based on declarative specifications. In Pro-
ceedings of the Twelfth International Confer-
ence on Data Engineering, pages 132-141.
IEEE Computer Society, 1996.

S. J. Russell and P. Norvig, editors. Artificial
Intelligence : A Modern Approach. Prentice-
Hall, 1995.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View maintenance in a warehous-
ing environment. In Proceedings of the 1995
ACM SIGMOD International Conference,
1995.

